Virtual Inertia Control Strategy for Improving Damping Performance of DC Microgrid With Negative Feedback Effect

نویسندگان

چکیده

Voltage of DC microgrid is prone to oscillation, originated from the following three factors: 1) negative damping performance converter; 2) interaction between power converter and network; 3) positive feedback (PF) voltage control loop. Analogous relationship force velocity motion, it derives functional current voltage. The motion can be illustrated by derived vectors since transfer functions have corresponding phase gain at a specific frequency. It found that forms PF when negative, which destabilize DC-side oscillated However, stabilize system make attenuated. A virtual inertia (VI) strategy proposed for enhancement forming system. theoretical analysis demonstrated Star-Sim hardware-in-the-loop (HIL) experiments.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Designing a new robust control for virtual inertia control in the microgrid with regard to virtual damping

Background and Objectives: Virtual inertia control, as a component of a virtual synchronous generator, is used for the implementation of synchronous generator behaviour in microgrids. In microgrids that include high-capacity distributed generation resources, in addition to virtual inertia, virtual damping can also lead to improvement of frequency stability of the microgrid. The purpose of the c...

متن کامل

Aalborg Universitet A Virtual Inertia Control Strategy for DC Microgrids Analogized with Virtual Synchronous Machines

In a DC microgrid (DC-MG), the dc bus voltage is vulnerable to power fluctuation derived from the intermittent distributed energy or local loads variation. In this paper, a virtual inertia control strategy for DC-MG through bidirectional grid-connected converters (BGCs) analogized with virtual synchronous machine (VSM) is proposed to enhance the inertia of the DC-MG, and to restrain the dc bus ...

متن کامل

Control of a DC Microgrid

A microgrid is a part of a distribution network embedding multiple distributed generation systems (mostly nonconventional renewable energy sources like photovoltaic panels, small wind turbines etc.) and storage systems with local loads, which can be disconnected from the upstream network under emergency conditions or as planned. The microgrid concept naturally arose to cope with the penetration...

متن کامل

A New Control Strategy for Controlling Isolated Microgrid

Microgrid control in isolated mode is a highly important subject area. In the present paper, a new method is used for controlling the isolated microgrids. This method was used based on the classification of the microgrids into two groups, namely fast-dynamic (battery and flywheel) and slow-dynamic (diesel generator, electrolyzer, fuel cell). For the microgrid components with fast dynamics, a se...

متن کامل

Coordinated Control of Doubley Fed Induction Generator Virtual Inertia and Power System Oscillation Damping Using Fuzzy Logic

Doubly-fed induction generator (DFIG) based wind turbines with traditional maximum power point tracking (MPPT) control provide no inertia response under system frequency events. Recently, the DFIG wind turbines have been equipped with virtual inertia controller (VIC) for supporting power system frequency stability. However, the conventional VICs with fixed gain have negative effects on inter-ar...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Journal of Emerging and Selected Topics in Power Electronics

سال: 2021

ISSN: ['2168-6777', '2168-6785']

DOI: https://doi.org/10.1109/jestpe.2020.2998812